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ABSTRACT   

Laser-based, mid-infrared (MIR) hyperspectral imaging (HSI) has the potential to detect a wide range of trace chemicals 
on a variety of surfaces under standoff conditions.  The major challenge of MIR reflection spectroscopy is that the 
reflection signatures for surface chemicals can be complex and exhibit significant spectral variability.  This paper 
describes a MIR Hyperspectral Simulator that is being developed to model the reflectance signatures from surfaces 
including the effects of speckle and other sources of spectral variability.  Simulated hypercubes will be compared with 
experiments.    

Keywords: infrared spectroscopy, vibrational spectroscopy, hyperspectral imaging, chemical detection, standoff 
detection 
 

1. INTRODUCTION  

The mid-infrared (MIR) portion of the optical spectrum spans roughly  ≈ 2.5 to 14 m (in wavenumbers,   c  

4000 to 700 cm-1) and contains the mid-wave infrared (MWIR) and long-wave infrared (LWIR) atmospheric 
transmission windows along with the so-called “molecular fingerprint region.”  MIR spectroscopy is a standard 
laboratory method for identifying and characterizing chemicals.  Laser-based, MIR hyperspectral imaging (HSI) is a 
method for detecting a wide range of trace chemicals on surfaces at standoff distances of many 10’s of meters at high 
speed, with high sensitivity, and using a sensor that is intrinsically eye-safe.  This is enabled by the fact that almost all 
chemicals have unique MIR absorption spectra with absorption cross-sections that can be very large [1-5].   

The major challenge of MIR reflection spectroscopy is that the reflection signatures for surface chemicals can be 
complex and exhibit significant spectral variability.  Reflection spectra often depend on parameters such as chemical 
concentration, particle size distribution (for solids), substrate material, substrate roughness, viewing angle, etc. 
Furthermore, measured reflection signatures often include speckle, which adds significant noise.  In order to fully utilize 
the potential of MIR reflection spectroscopy for standoff chemical detection, it is imperative that reflectance models for 
contaminated surfaces be developed to explicitly include as many factors affecting signature variability as possible [6,7].  
These models will then facilitate the further development of detection & classification algorithms [8].   

This paper describes a MIR Hyperspectral Simulator (i.e., “HSI Simulator”) that has been developed to model 
reflectance signatures of chemicals on surfaces.  The goal is to develop a simulator that matches experimental results 
with enough fidelity to allow for the development of detection algorithms that are relevant across a wide range of real-
world conditions. In addition to incorporating multiple precise, physically-motivated spectral models of contaminated 
surfaces, our simulator also explicitly includes effects of detector noise and speckle at each pixel of a HgCdTe (MCT) 
focal-plane array (FPA) when illuminated by a wavelength-tunable laser.    
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Figure 1: Concept of laser-based mid-infrared (MIR) hyperspectral imaging (HSI). 

 

2. MODELS FOR LASER-BASED MIR HYPERSPECTRAL IMAGING 

Figure 1 depicts the concept of MIR HSI, where a wavelength-tunable laser illuminates a surface and the reflected light 
is captured by a camera.  As the laser wavelength is tuned, images are captured by the camera at each excitation 
wavelength to generate a hyperspectral image cube (i.e., “hypercube”).  After appropriate normalization for laser 
illumination intensity and system throughput, this hypercube contains the reflectance of the target surface relative to that 
of a reference surface.  Each frame of the hypercube contains an image of the surface reflectance at a particular 
wavelength, and likewise each pixel contains the full spectral reflectance at a particular point on the target.  These 
spectra can subsequently be compared to a library of reference signatures in order to identify each chemical contaminant.  
As shown in Figure 1, gases that are present between the sensor and the surface can also be detected and identified based 
on their MIR absorption spectra. 

 

 

Figure 2: (a) Geometry of HSI Simulator and (b) a frame of a synthetic hypercube for a surface containing a circular region 
of chemical contamination. 

 



 
 

 

 

2.1 Model Parameters 

The geometry that is used by the HSI Simulator to calculate synthetic hypercubes is shown in Figure 2a.  The angle of 
laser illumination and sample orientation are defined with respect to the camera axis.  The primary input parameters are 

 Geometry:  distance from camera lens to surface of interest 

 Camera:  pixel size, number of pixels in hypercube, D*, quantum efficiency, integration time 

 Receiver:  focal length, lens diameter, optical throughput 

 Laser:   list of wavelengths, illumination intensity, polarization, illumination angle 

 Surface:   material, sample angle, roughness parameters 

 Chemical:   chemical identification number, loading, appropriate signature model 

 Speckle:   enable or disable 

Figure 2b shows a frame of a synthetic hypercube frame with 32x32 pixels of a surface that has been contaminated with 
a liquid.  This hypercube includes both detector noise and speckle noise.  The sections that follow describe the basic 
framework used to calculate these synthetic hypercubes.   

 

2.2 Received Power 

The total power received by the camera, receiverP ,  is calculated using [1] 

    receiver laserP P T   (3) 

where laserP  is the incident laser power,    is the solid angle of the receiver, and T  is a factor that represents all 

transmission losses.  If the surface is at a distance L  from the camera lens and is imaged onto the FPA using a lens with 

effective focal length f  and diameter lensD , the solid angle for the receiver is given by 
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The scattering from a surface is characterized by the bi-directional reflectance distribution function (BRDF), which 
includes the spectral signature of the chemical/surface combination.  The BRDF is defined as 

 

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radiance at detector
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where the “radiance at detector” is the collected power per unit area per unit solid angle of the receiver, and the 
“irradiance of illumination” is the incident laser power per unit area in a plane that is normal to the illumination 
direction.  The BRDF thus has units of inverse steradians, sr-1.  For signal-to-noise (SNR) calculations, the signal power 

at each pixel, pix
P , is of primary interest.  Each pixel of the FPA images a region on the target having a size called the 

ground sampling distance (GSD) which is given by 
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where pix
d  is the physical diameter of each pixel on the detector and f  is the focal length of the collecting lens.  The 

total power received per pixel can be written in terms of the laser irradiance laserI  (power per unit area), as  
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where the f-number of the lens # lensf f D .  Since the BRDF has units of inverse steradians, it is convenient to 

convert this value to a reflectance relative to a reference substrate.  We choose this reference substrate to be a perfect 

Lambertian scatterer, which has a constant BRDF given by  


 1 -1sr . The reflectance measured at each pixel of the 

hypercube is then calculated using 
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The preceding equations is what is calculated by the HSI Simulator.  Experimentally, we have use a sandblasted 
aluminum as a reference substrate; it is spectrally neutral, but has a BRDF that is roughly 2-times higher than a perfect 
Lambertian scatterer at small angles.  This additional factor is incorporated into the calculation of the reflectance spectra 
such that the hypercube is normalized to a perfect Lambertian-scattering surface.   

 

2.3 Substrate Models 

The BRDF of any substrate is defined as a function of the wavelength, incident angle, and emittance angle of the laser 
illumination.  In most cases, the BRDF of the substrate can separated into terms that are dependent upon wavelength and 
angle, 
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N   .  The angular portion of the BRDF can be 

approximated as a sum of exponential terms using 
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We have found this approximation to be accurate in describing many surfaces of interest at modest offset angles (e.g., 

<30°).  It is usually most convenient to normalize 
sub

N  such that the integrated scattering intensity over all directions is 

unity.  In this case, the wavelength dependent portion of the BRDF can be obtained from hemispherical reflectance 

measurements.  Alternatively, it can be inferred from the complex index of the substrate,
subn , using 
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2.4 Data for Chemicals 

The HSI Simulator incorporates spectral data for hundreds of chemicals. This includes complex refractive index data for 
liquids, powder reflectance data for solids, and absorbance data for vapors.  As an example, Figure 3 plots the extinction 
coefficient (i.e., absorption coefficient) for several liquids in the database. The extinction coefficient is color coded as a 



 
 

 

 

function of wavenumber (and wavelength) over the MIR band in which red represents strongly absorbing bands.  Based 
on this plot, one can readily see why the wavelength range between about 6 – 13 m is called the “molecular fingerprint 
region.”  

 

Figure 3: Color-coded presentation of the extinction coefficient for several liquids versus wavenumber (wavelength is 
indicated on the top axis).  Note that the wavenumber scale is non-linear to facilitate plotting over a wide range. 

 

2.5 Model for Liquid-Contaminated Surfaces 

The physical model being used to simulate liquid-contaminated surfaces is depicted in Figure 4.  The Transfer Matrix 
Method (TMM) is used to exactly calculate the reflectance due to a film (or multilayer film) on a substrate assuming that 
the interfaces are both smooth and parallel [9].  As a direct result of these two assumptions, there is (in principle) only a 
specular reflection from the target.  But, since the HSI Simulator is primarily concerned with non-specular reflection 
conditions, the BRDF for the contaminated surface is approximated as the product of the reflectance calculated using the 

TMM and the angular portion of the substrate’s BRDF under the assumption that 
sub

N  is normalized.   

Figure 4 plots example spectra for a 1-m-thick film of silicone oil on both metallic (perfect metal) and dielectric 
(polyethylene) substrates.  For case of the metallic substrate, the reflectance is reduced at those wavelengths where the 
silicone oil is absorbing.  For the case of a dielectric substrate, the reflectance is enhanced at those wavelengths where 
the silicone oil is absorbing, and results in an inverted spectrum compared to the metallic substrate.  This effect is 
expected based on the physics of the interfacial boundary conditions [1,6]. 

We plan to continue to refine the signature models to more closely match experiments.  This will include extending the 
TMM to take into account the fact that the surfaces are, in fact, rough rather than smooth.  We also plan to incorporate 
additional models for cases where the contamination cannot be treated as a conformal thin film on a surface. This will 
involve defining the most likely applicable signature models for a particular combination of surface, chemical, and 
deposition conditions. 

 

2.6 Noise Models 

The HSI Simulator currently incorporates models for both detector noise and speckle noise.  The detector noise is 
calculated based on the pixel’s specific detectivity, or D*.  Detector noise models that more closely match the 
performance of the actual MCT FPA being used including, for example, readout noise can also be incorporated. 



 
 

 

 

In many cases, the spectral variability is dominated by speckle. It is, therefore, very important to incorporate this 
phenomenon in the HSI Simulator.  The general approach for incorporating speckle is show in Figure 5.  First, the 
reflected amplitude is calculated for each subpixel at the target using the relevant signature model.  This reflection 
amplitude is then multiplied by a phase factor that is related to the local height of the surface, where the surface 
roughness is assumed to be Gaussian distributed.  By performing a Fast-Fourier Transform (FFT) on the resulting 
amplitude distribution, one obtains the speckle pattern in the aperture plane of the camera lens.  A subsequent FFT 
calculates the amplitude of the speckle pattern at the camera FPA.  The amplitudes are then converted to local intensity, 
and results are binned on a pixel basis to yield the final hypercube.  The statistics of the speckle patterns calculated using 
this method are consistent with theory [10]. 

 

Figure 4:  (left) Model for liquid chemicals and (right) calculated results for silicone oil on dielectric and metallic surfaces. 

 

 

Figure 5:  Method for incorporating speckle into synthetic hypercubes. 

 



 
 

 

 

2.7 Example of Synthetic Hypercube and Comparison with Measurements 

In this section,  we compare a synthetic hypercube generated using the HSI Simulator with experimentally measured 
results.  A measurement was made of a high-density polyethylene (HDPE) substrate, on which chemicals were deposited 
in the form of our sponsor’s logo.  Referring to Figure 6a, most of the IARPA logo was drawn using silicone oil while 
the dot on the letter “i” was formed using triethyl phosphate (TEP).  Measurements were made at a standoff distance of 5 
meters and at an offset angle of a few degrees to avoid the direct specular reflection.  Details regarding the measurement 
(including a video demonstration) can be found in reference [11].  Figure 6b shows a single frame of a measured 
hypercube as well as the reflection spectrum due to each chemical.  As described previously, for a liquid on a dielectric 
substrate, a higher reflectance occurs at wavelengths where the chemical is absorbing.  The two chemicals can be easily 
distinguished based on their reflection spectra.  Note also the pixel-to-pixel noise which is due to speckle and, to a lesser 
extent, variations in the thickness of the deposited chemicals.  Figure 6c shows a frame of the synthetic hypercube 
calculated using the HSI Simulator.  Each of the chemicals was assumed to have a thickness of 1 m.  Speckle was 
incorporated assuming a root-mean-square (RMS) surface roughness of 2 m.  The synthetic hypercube visually mimics 
the measured hypercube with reasonably good fidelity, and the measured spectra are well-matched by simulation.   

 

Figure 6:  (a) HDPE substrate with the IARPA logo formed from two chemicals, (b) Measured hypercube frame and spectra, 
and (c) Synthetic hypercube frame and spectra as calculated using the HSI Simulator. 



 
 

 

 

 

Figure 7:  (top) Reflectance of soda-lime glass and the hemispherical diffuse reflectance from caffeine powder.  (bottom) 
Reflectance of trace-levels of caffeine for two separate deposition methods on soda-lime glass. 

 

 

 

Figure 8:  (a) Top-view of substrate with isolated particles, and (b) side-view showing various components of the signature 
model. 

 

2.8 Model for Surfaces Contaminated with Solid Particles 

Several signature models are being investigated in order to model solid particles and solid-residues on surfaces as 
accurately as possible.  Here, we describe a particularly simple model that is based on measured diffuse reflectance from 

powders, 
powder

R , and the measured reflectance spectrum for the substrate,  
sub

R .   

The top portion of Figure 7 plots both the diffuse reflectance of caffeine powder and the specular reflectance of soda-
lime glass.  Details of these measurements are given in reference [11].  The lower graph in Figure 7 plots the measured 
reflectance of caffeine on soda-lime glass for two different deposition conditions.  The model being described here is 



 
 

 

 

applicable for the case of particles of caffeine (rather than solution-deposited caffeine).   One can see that the minima in 
reflectance occur at the same wavenumbers for the powder and for the particulates on glass.  For particulates on glass, 
however, the overall shape of the curve is strongly modulated by the reflectance of the glass substrate.  This naturally 
leads to the following simple model in which the total reflection spectrum is calculated based on the three different paths 
the incident light can take as shown in Figure 8 

    , ,sub ,
1

target powder bs fs sub
FF FF C C R  

  
      . 

where  , sr
powderpowder R   .  Here, the first term is simply the direct reflectance from the substrate. The second 

term contains back reflectance from the particles, as well as the light that scatters off both the particle and the substrate. 
These factors are scaled using the particle fill factor, FF, and two fit parameters Cback and Cfwd. Figure 9 plots the 
measured reflection spectra for particulates of the explosives RDX and PETN on soda-lime glass.  These measurements 
were made at a range of 0.6 m [11].  The black curve is the measured reflectance, while the blue curve is the fit using the 
expression given above.  The correspondence is surprisingly good given the simplicity of the model.  Again, we are 
continuing to refine the model to bring it into closer agreement with measurements. 

 

 

Figure 9:  Measured (dark blue) and calculated (light blue) reflectance of (a) RDX and (b) PETN particles on soda-lime 
glass.  The calculation is based on a simple that model that based on measured powder reflectance. 

 

3. SUMMARY 

We describe a simulator for a laser-based standoff chemical detection system that utilizes MIR HSI.  Our goal is to 
generate synthetic hypercubes that match experimental results with enough fidelity to be useful for the development of 
detection algorithms that cover a wide application space.  The HSI Simulator incorporates signature models for liquids 
and solids on various surfaces, as well as gases.  Also included are effects related to speckle noise and detector noise.  
Good correspondence has been achieved with signature models for both liquid and solid contaminants.   Work is 
ongoing to further refine and improve upon the accuracy of the signature models.   
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